Development of Composting Systems for Ohio Dairy and Hog Farms

Frederick C. Michel Jr.

Department of

Food, Agricultural and Biological Engineering

Research Objectives

- Develop strategies to minimize water use and maximize the retention of manure in solid form.
- Minimize generation, storage and transport of liquid manure and its associated negative environmental impacts for dairy systems widely used in Ohio.
- Develop Management alternatives for manure laden sand bedding.
- Reduce odor and ammonia emissions.
- Develop composts that suppress plant diseases and reduce pesticide use for value added-markets.

Introduction

- Results of a survey of Ohio dairies.
- Manure handling on typical farms.
- Composting studies using dairy and hog manure amended with sawdust and straw.
- Composting sand bedded dairy manure.
- Evaluation of a compost stability test.
- Conclusion.

2002 Ohio Dairy Survey

- 800 surveyed, 299 responses (4200 total).
- Milking herd size ranged from 3 to 700 cows.
- Average herd size is 74 cows.
- Land for manure spreading averaged 287 acres.
- 37% have expanded in the last 5 years
- 30% plan to expand in the next 5 years.

Numbers of Cows

	Avg.	Range
 Milking Herd 	74.0	(1-700)
 Heifers > 12 months 	27.9	(0-350)
 2-12 month old Heifers 	23.9	(0-300)
 Calves < 2 months 	7.2	(0-50)

Bedding Type and Milking Herd Size

Bedding Types used by Ohio Farms (% of farms)

Bedding Types used by Ohio Cows (% of cows)

Reasons for Bedding Choice

Herd Size and Somatic Cell Counts

- July 2001
- December 2001

Avg. Range
314,000 (34k-875k)
289,000 (25k-1,170k)

Bedding Type and Somatic Cell Count

Manure Removal Method

Manure storage

Manure application method

Dairy Farms that Compost

Farms identified for in-depth manure management and water usage analysis

	Farm	Location	Milking Cows	Bedding ^a	Manure Management System
A		Marshallville	1350	Sand	Scrape/Lagoon storage
В		Jacobsburg	230	Compost/ Sawdust	Separator/Composting/ Lagoon
C		Ashland	430	Sand	Flush/Lagoon storage
D		Putnam	650	Sand	Scrape/Concrete storage
E		Bally	400	Sawdust	Composted bedding/Flush
F		Wooster	70	Straw/ Sawdust	Composting
G		Burton	400	Straw/Sand/ Sawdust	Gravity to liquid storage/ Pile plus daily haul

Clean sand bedding

20,000,000 gallon manure storage lagoon

Farm C. 430 Head, Sand and flush

Daily Water Usage (430 head)

Gallons/Day

Cleaning milk tanks

126

Wash Vat

540

–4 cycles, 3x/day

Flush:

walkway to parlor

holding penClothes washing

-15 loads/day

1050 *

1500 **

450

TOTAL

 $3666 = 8.5 \, gal/cow/dy$

^{*}considering changing to recycled water

^{**} additional water for flushing system

Farm D. 650 Head Dutch Dairy using sand bedding

Farm D - 650 Head Dairy using sand bedding

	Moisture (%)		P (%)			C/N
1=Flush Water	94	5.0	0.7	2.3	76	9
3=SCRAPED MANUF	RE 77	2.2	0.3	8.0	45	12
4=MANURE + SAND	36	0.4	0.1	0.2	11	25
5=LIQUID OVERFLO	W 95	5.7	0.8	2.6	73	8

Draining/Drying Separated Sand

Daily liquid flow per Cow

	Barn In	Barn Out	Pit In	Effluent	Solids
Wet wt (lbs)	298	196	256	271	61
Dry wt (lbs)	59	31	31	14	17
Total C (lbs)		14	14	6 (45%)	7
Total N (lbs)	1.1	1.1	0.7 (67%)	0.3	
Ash (lbs)	5.5	6.5	3.9	2.0	
P (lbs)	0.2	0.2	0.14 (78%)	0.04	
K (lbs)	0.5	0.4	0.4 (81%)	0.1	
Ca (lbs)	0.7	0.7	0.4 (66%)	0.2	

Farm F. 70 Head, straw bedding, Organic farm

PROTOTYPE SOLID MANURE BASED DAIRY

Compost amendments (sawdust, hay, straw, horse bedding, recycled compost, etc.)

Unseparated Manure

Value Added Markets

Free-stall barn Manual or Automatic Scrape system,

Sand, Straw or Sawdust bedding

Composting

High-Rise Hog House with Aerated Floor for Composting/Drying

Fresh Aire Farms

Manure composting 4 Windrows made in

- 1. May
- 2. August
- 3. Early September
- 4. Late September

Composting Temperatures

Oxygen Concentrations

Physical properties of dairy manure compost during composting.

	Dairy + Sawdust				
	Day 0	Day 61	Day 88	Day 122	
Volume (m ³)	60.5	29.0	20.5	11.8	
Moisture (%)	65.0	60.9	67.0	46.0	
Wet Density (kg/m ³)	368	342	354	338	
Dry Density (kg/m ³)	129	134	117	182	
Uncompacted Porosity	0.66	0.64	0.60	0.58	
Total Wet Weight (kg)	22253	9921	7238	3974	
Total Dry Weight (kg)	7789	3879	2389	2146	
Dry Matter loss (%)		50.2	69.3	72.5	
Volume Reduction (%)		52.0	66.2	80.5	

72% reduction in transportation weight versus fresh manure

Physical properties of dairy manure compost during composting.

	Dairy + Straw				
	Day 0	Day 54	Day 81	Day 115	
Volume (m ³)	92.26	46.65	16.54	9.80	
Moisture (%)	65.0	66.5	58.9	38.5	
Wet Density (kg/m ³)	172.7	175.6	238.4	331.7	
Dry Density (kg/m ³)	60.4	58.8	98.0	204.0	
Uncompacted Porosity	0.76	0.78	0.71	0.73	
Total Wet Weight (kg)	15933	8192	3943	3250	
Total Dry Weight (kg)	5576.7	2744.2	1620.6	1998.3	
Dry Matter loss (%)		50.79	70.94	64.17	
Volume Reduction (%)		49.44	82.07	89.38	

Properties of Hog Manure compost during composting.

	Hog + Sawdust				
	Day 0	Day 40	Day 67	Day 101	
Volume (m ³)	50.5	55.7	48.7	42.7	
Moisture (%)	67.3	64.8	56.9	45.5	
Wet Density (kg/m ³)	795.3	501.6	406.9	381.2	
Dry Density (kg/m ³)	260.1	176.6	175.4	207.8	
Uncompacted Porosity	0.26	0.51	0.61	0.60	
Total Wet Weight (kg)	40178	27914	19828	16281	
Total Dry Weight (kg)	13138	9825	8546	8873	
Dry Matter loss (%)		25.2	34.9	32.5	
Volume Reduction (%)		-10.2	3.5	15.5	

Volume Remaining after Composting

Weight Remaining after Composting (dry)

Weight after composting (wet)

Compost Weight/Manure Weight

Nitrogen Remaining

Equivalent N Weight

Composted Dairy Manure versus Original Manure

Unseparated Sand bedded manure

Compost Dry Bulk Density

Composting Sand Bedded Dairy Manure

Conclusions

- Composting can reduce wet weight relative to that of manure by up to 75% reduction.
- Volume reduced 20 50%.
- Only modest amounts (0-30%) of Nitrogen lost.
- Moisture control is critical to obtain potential weight reductions.
- Sand bedded dairy manures can be effectively composted with organic amendments.
- Technologies for separated sand still need to be developed.
- A simple stability test is useful for compost quality control purposes by farmers.

Objective

 Determine standards for stability of composted dairy and swine manures to allow production of value-added disease suppressive products with reproducible characteristics.

Compost Stability (CO₂ evolution rate)

Solvita CO₂ test

Regression Analysis of Solvita test versus Stability

Correlations between Solvita® test values and various combined characteristics of three different manure composts.

	Solvita® CO₂ test		Solvita® NH₃ test			Solvita® Maturity Index			
Characteristic	r	n	P-value	r	n	P-value	r	n	P-value
CO ₂ evolution	-0.79	150	<0.0001	0.05	150	0.5093	-0.67	150	<0.0001
Compost age	0.82	150	<0.0001	0.07	150	0.3698	0.82	150	<0.0001
% VS	-0.56	150	<0.0001	0.01	150	0.9312	-0.45	150	<0.0001
C/N ratio	-0.54	150	<0.0001	-0.26	150	0.0012	-0.62	150	<0.0001
Organic C	-0.30	150	0.0002	0.09	150	0.2546	-0.12	150	0.1590
Total N	0.43	150	<0.0001	0.29	150	0.0003	0.57	150	<0.0001
Ammoniacal N	-0.21	150	0.0108	-0.68	150	<0.0001	-0.61	150	<0.0001
Nitrate N	0.25	150	0.0014	0.17	150	0.0356	0.31	150	<0.0001
ivitiate iv	0.23	150	0.0014	0.17	130	0.0336	U.3 I	130	<0.0001

Use of Solvita Maturity Index to Measure Compost Stability

Correlation of compost variables with cucumber dry weight (R²)

	Compost		
Characteristics	Dairy-Straw	Dairy-Sawdust	Hog-Wood
Electrical Conductivity	0.817	0.443	0.242
Compost age	0.814	0.415	0.117
Total N	0.742	0.406	-0.056
Organic C	0.680	0.360	0.010
C/N ratio	0.880	0.295	-0.079
Solvita CQ index	0.767	0.164	0.102
Ash	0.754	0.131	0.123
Solvita NH index	0.378	0.108	-0.030
CO ₂ respirometry	0.642	0.070	0.167
Solvita maturity index	0.782	0.059	0.092
NO ₃ -N	0.264	0.036	< 0.00
NH ₃ -N	0.209	-0.028	0.182

Measurement and Modeling NH₃ concentration in livestock facilities

Effects of Nutrition and Waste Management Technologies Pathogens in Animal Excreta

- Enterohemorrhagic and related E. coli
- Salmonella
- Campylobacter
- Cryptosporidium parvum (bovine, swine, sheep)
- Mycobacterium av. Paratuberculosis (dairy)
- Rotavirus groups A & B (bovine, swine)
- Calicivirus (bovine, swine)

OAPDC Studies of Roof Disease Control via Composi

Compost Utilization

Dan Young Fresh Air Farms

