# The Evolution of Composting at Ohio State University: The Practical Aspects of Compost Management

Gerald Reid Harold Keener Mary Wicks



# **Compost Pad**





Aerial view of concrete and clay pads, curing area and constructed wetland treatment cells at the Ohio StateUniversity's Ohio Agricultural Research and Development Center in Wooster, OH.

# **Aeration System**





and fans.

# **Material Delivery**





Building a windrow with dairy manure and bedding.

# Runoff Filter Strip





Wood chip berm used to filter runoff from the pad.

# **Wetland Treatment Cells**





Constructed wetland treatment cells were designed to remove N and P from runoff.



## **Amendments**



- Moisture content of dairy manure is 83%.
- Amend with straw or sawdust to meet target of 65%.
- Ratio of manure to amendment is 3:1.



Turning mixes materials and reduces particle size.





| Volume Reduction      |                                       |  |  |  |
|-----------------------|---------------------------------------|--|--|--|
| Straw                 | 79%                                   |  |  |  |
| Sawdust               | 56%                                   |  |  |  |
| Weight Reduction      |                                       |  |  |  |
| Straw                 | 50-80% of original manure             |  |  |  |
| Sawdust               | 50-80% of original manure             |  |  |  |
| Rate of Decomposition |                                       |  |  |  |
| Straw                 | Slow to start, shorter process        |  |  |  |
| Sawdust               | Consistent throughout, longer process |  |  |  |

Source: Michel, et al, 2004

# Research: Windrow Covers



| Effects of Covers           | Covered | Uncovered |
|-----------------------------|---------|-----------|
| Reduce nitrogen loss        | 4%      | 18%       |
| Slow down process (DM loss) | 56%     | 67%       |

#### Management of covers:

Most effective as temperature of compost declines.



## Research: Rainfall Simulation



- Simulated 5-, 25-, and 100-year storm events.
- Findings:
  - Higher moisture content of compost = higher concentration of chemicals in runoff.
  - Major losses TDS, ammonia, potassium.
  - Key is to maintain optimal moisture to minimize amount and toxicity of runoff.

Source: Skalak, et al, 2004







 Aeration of windrow (dairy manure + sawdust) to maintain 10% oxygen (fan on 2 min/hr).

| Effects of Aeration | Aerated | Non-aerated |
|---------------------|---------|-------------|
| Dry matter loss     | 38%     | 50%         |
| Nitrogen loss       | 25%     | 10%         |
| Weight loss         | 48%     | 38%         |

Cost of aeration at 2 min/hr for 70 days:
 \$6.00 per 90-ft windrow

Source: Keener, et al, 2002

## Research: Odors



- Measured volatile fatty acids (VFA) and other odors during composting.
- Findings:
  - Formation of odors in manure occurs during storage under anaerobic conditions.
  - Composting decreases VFAs and other odors with most gone in 7 days and all gone in 16 days.
  - On/off aeration decreased VFA emissions  $(O_2 > 5\% \text{ maintained at all times}).$

## Odors



- Findings (continued):
  - Biofilters used early in composting process can reduce odors.
  - Oxygen is key to keeping microbial population, which feeds on odor compounds, alive.





Source: Elwell, et al, 2004





- No effect on compost properties, temperatures, oxygen concentration.
- More uniform particle size.
- Increased mass reduction and greater N loss.

| Effects of<br>Turning | Turning Frequency  |                     |                  |  |
|-----------------------|--------------------|---------------------|------------------|--|
|                       | 3 days,<br>windrow | 10 days,<br>windrow | 10 days,<br>pile |  |
| DM loss               | 70%                | 65%                 | 53%              |  |
| N loss                | 41%                | 35%                 | 15%              |  |

Source: Tirado, 2008





- During transition of soils to organic production, compost can:
  - Boost fertility and improve soil quality.

 Suppress diseases, but depends on the compost composition and soil type.

Source: Baysal, et al, 2008

# Research: Compost as Mulch



#### Low C:N (<30:1)

- N release increases
- Degraded soils
- Increased plant growth
- New landscapes
- Root rot suppression

#### High C:N (>30:1)

- N tied up by microbes
- N unavailable for plants
- Slow to moderate growth
- Established plantings
- Walkways

Prescription mulching with compost depends on C:N ratio.



Source: Herms, 2009

## Education



## **Ohio Compost Operator Education Course**

March 30-31, 2010 Wooster, Ohio

Contact: Mary Wicks 330.202.3533

wicks.14@osu.edu

www.oardc.ohio-state.edu/ocamm





**Gerald Reid** 

OSU/OARDC

1680 Madison Ave.

Wooster, OH 44691

330.263.3764

reid.5@osu.edu

## References



- Baysal, F., M.S. Benitez, M.D. Kleinhenz, S.A. Miller, B.B. McSpadden Gardener. 2008. Effects of farm organic transition on soilborn disease suppression. *Phtyopathology* 98: 562-570.
- Elwell, D.L., D.C. Borger, D.V. Blaho, J.K. Fahrni, H.M. Keener, L.B. Willett. 2004. Changes in Concentrations of Malodorous Compounds During Controlled Aeration of Composting. Compost Science and Utilization, 12(2): 102-107.
- Herms, D.A. 2009. Mulching the Landscape: Effects on Soil Ecology and Plant Health. Presented at the Ohio Compost Operator Education Course, Wooster, OH, April 1-2, 2009.
- Keener, H.M., J.A. Pecchia, G.L. Reid, F.C. Michel, D.L. Elwell. 2002. Effects of Aeration and Covers on NH<sub>3</sub>, Water and Dry Matter Loss During Windrow Composting of Dairy Manure. Presented at the ASAE Annual International Meeting, Chicago, IL, July 28-31, 2002. Paper # 024139.
- Michel, F.M., J.A. Pecchia, J. Rigot, H.M. Keener. 2004. Mass and Nutrient Losses During the Composting of Dairy Manure Amended with Sawdust or Straw. Compost Science & Utilization, 12(4): 323-334.
- Skalak, K.M., T.F. Wilkinson, D.L. Elwell, H.M. Keener, F.C. Michel, L.C. Brown. 2004. Using a Rain Simulator to Evaluate Leaching from Compost Windrows – Preliminary Results. Presented at NABEC 2004, University Park, PA, June 27-30, 2004. Paper # NABEC 04-0040.
- Tirado, S.M., 2008. Effects of turning frequency, pile size and season on physical, chemical and biological properties during composting of dairy manure/sawdust (Dm+S). Master's Thesis. Ohio State University.

# Market Value of Compost



- Suppresses disease
- Slow release of nutrients
- Added organic matter
- Reduces erosion
- Increases water holding capacity