Does Organic Matter, Matter?

Greg LaBarge,
Field Specialist Agronomic Systems
Compost Association Meeting
August 2018

Topics

- OM Defined
- OM in soil
- Do Ohio soil need it?
- Functions

Soil Regions of Ohio

What is soil organic matter?

Soil fraction that consist of plant and animal tissue in various stages of breakdown.

Three types:

- Plant residue and microbes
- 2. Active organic matter (detritus)
- 3. Stable organic matter (humus)

What does soil organic matter mean to soil?

Most productive agriculture soils are between 3-6% organic matter.

- Physical
- Chemical
- Biological

Are there Ohio soils that would benefit for increased OM?

Percentage of soils with more than 3% organic matter in upper 10 inches

Soil Regions of Ohio

Compost in stable OM source

Figure 2. Composted organic materials decompose more slowly than fresh organic matter because they have already undergone a significant amount of decomposition.

Source: Cooperband, University Wisconsin, 2002

Improve physical characteristics of soils?

- Aggregate stability leading to better infiltration and aeration
- Increase water holding capacity
- Reduce surface crusting

Improve available water of soils?

- Regardless of soil type
 OM improve Water
 Holding capacity
- Rule of thumb
 - 1%=0.75 inches of water

Source: Hudson, 1994

What does that mean?

			·			
Soil	Texture	Depth	Permeability	Available Water	Maximum	Organic
		(Inches)	(In/hr)	Holding	Water Based on	Matter
				Capacity(In/In)	depth	(%)
					(Inches)	
Hoytville	Clay	0-8	0.2-2.0	0.16-0.21	1.68	3-6
	loam					
		8-29	0.2-0.6	0.11-0.15	4.35	
Mermill	Loam	0-9	0.6-0.20	0.16-0.20	1.80	3-6
		9-32	0.6-0.20	0.12-0.16	5.12	
Ottokee	Fine	0-8	6.0-20	0.07-0.11	0.88	0.5-2
	sand					
		8-60	6.0-20	0.06-0.10	6.00	

3 predominate soils

Fulton County, OH

Improve chemical characteristics of soils?

- Increase Cation Exchange Capacity (CEC) ability to hold nutrient
- Improve soil buffering capacity to pH changes
- More active soil in cycling nutrients

17 essential nutrients for crop production?

	Nutrient	Symbol	Analysis (pounds per ton)
1	Carbon	С	air
2	Hydrogen	Н	air
3	Oxygen	0	air
4	Nitrogen	N	27.7 (2.4 NH ₄)
5	Phosphorus	P	5.5
6	Potassium	K	13
7	Calcium	Ca	37.5
8	Magnesium	Mg	10.7

17 essential nutrients for crop production?

	Nutrient	Symbol	Analysis (pounds per ton)
9	Sulfur	S	
10	Chloride	Cl	
11	Zinc	Zn	0.2
12	Iron	Fe	
13	Manganese	Mn	
14	Copper	Cu	<0.1
15	Boron	В	<0.1
16	Molybdenum	Мо	<0.1
17	Nickel	Ni	<0.1

Improve biological characteristics of soils?

- Food for microbial community
- Enhance biodiversity of and activity of microbial community
- Microbes provide biofilms and other compounds that improve soil structure

Improve biological characteristics of soils?

- Compost and raw manure increased diversity
- Reduce Plant
 Parasitic Nematode
 (PPN) prevalence

Source: Nahar, et.al., 2006

Figure 6. What is your management goal?

Modeling can give us some perspective on BMP adoption needed

Lake Erie-2018

Med Low Absent

Figure 1. Cyanobacterial Index from NASA MODIS-Terra data collected 15 July, 2018 at 11:19 EST. Grey indicates clouds or missing data. The estimated threshold for cyanobacteria detection is 20,000 cells/mL.

Figure 1. Cyanobacterial Index from modified Copernicus Sentinel 3 data collected 05 August, 2018 at 11:38 EST. Grey indicates clouds or missing data. The estimated threshold for cyanobacteria detection is 20,000 ce^{15, 6}mil.

8/5-Toxin Levels below recreational threshold

Grand Lake St Mary's-2018

What determines loss potential in a field?

Source

+

Transport

= Loss

- Soil Test Level (P)
- Nutrient additions

- Soil Type
- Drainage
- Management
- Cover
- Distance to water

Pounds of loss per acre

- For P, Ohio P Index revision will be released in August
- For soil erosion, RUSLE 2
- For N, Loss Potential based on subsurface drainage

Placement below Surface Reduces Risk of Loss

Water management will be necessary

Increasing OM

Physical barriers

Summary

- Organic matter (OM) is important to the physical and chemical characteristics of soil
- Compost is an already stable OM source, increases OM immediately
- Water quality issues in Ohio will require water management, OM serves a role
- OM = Soil Life!!

Greg LaBarge, Field Specialist Agronomic Systems labarge.1@osu.edu

